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SUMMARY 
The inclusion of mechano-caloric effects has introduced important changes in the form of the equations for 
uncoupled heat transmission, whence to essentially distinct response predictions [7]. The current work is 
devoted to understanding the changes in the field equations for elastic systems and their harmonic solutions 
with the inclusion of mechano-caloric effects. Low frequency waves are uneffected, but high frequency 
waves are predicted to have increased propagation velocities. It is observed that the mechanical response at 
high frequencies can be determined from the dynamical equations None if the adiabatic stress relations are 
used. Preliminary analysis for the propagation and dispersion at intermediate frequencies is given. 

1. Introduction 

Modification of the heat flux relation to account for finite signal speed has been the subject 

of  a number of  recent articles, [1 ]-[7]. In most of this work a heat flux relation generalizing 

Fourier 's  law is assumed in a form appropriate to produced a damped wave equation for 
the temperature 

OZO + aOtO = bV20 + .. .  (1) 

whenever the system can be uncoupled. The extension of Fourier 's  law given by 

(~tla = - 'c-1(1 a + HVO), (2) 

proposed by Vernotte [2], has been extensively investigated for a number of important 

applications by Tokuoka,  see [6]. This generalization does not appear to have other modi- 
vation than that for the uncoupled case it yields a temperature distribution equation with 
the form (1). The generalization of Fourier 's  law of heat conduction for the flux/,  given by 

I~ = - H V O  - KVp,  (3) 

where 0 is the temperature and p is the hydrostatic pressure, is discussed by Roetman in 

[7], [8] and is modivated in gas dynamics by mechano-caloric effects, de Groot  and Mazur 

[9], Chapman and Cowling [10], Loyalka [11]. Here H is the heat conductivity and K is 
the mechano-caloric coefficient. This law is also consistent with the required coordinate 
invariance, Truesdell and Toupin [12]. It  is of  interest to investigate the significance of the 
mechano-caloric effect, heat flux law (3), in the description of thermo-mechanical behavior. 
We will show that the mechano-caloric coupling implies a damped wave equation for the 
temperature when the temperature equation can be uncoupled f rom the mechanic terms. 
We also show that this coupling influences the wave number and propagation velocity, in 
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particular, the predicted limiting high frequency velocity for longitudinal waves is increased 
compared to the uncoupled case. We also observe that when uncoupling the heat equation 
the specific heat at constant stress should be used rather than the specific heat at constant 

strain. 
The field equations for the continuity, momentum and energy for material response, 

without convective terms, are 

t~tp "k p V ' v  : 0 (4) 

pOtv = V" T + p f  (5) 

pore = tr(TD) + co - V 'p  (6) 

where p, v, u, T, f ,  ~, D, to are the density, velocity field, displacement field, Piola-Kirch- 
hoff stress tensor, body force density, internal energy density, rate of deformation tensor 
and the internal heat source density respectively and 

V :-- d t u  , D = Sym(Vv), (7) 

and tr(AB) is the convected inner product of tensors which in cartesian coordinates is given 
in terms of the matrices of the tensors by the trace of the matrix product of A and B. The 
special case of this system determined by the constitutive assumptions 

T = - p I ,  ~ = 8(0, o) (8) 

where v = p-1 and I is the identity tensor, has been studied in [7], [8]. The assumptions 
in (8) do not imply a restriction to fluids, but for elastic materials, where p = - 1  tr T is 
the mean stress, these assumptions are very restrictive. 

In what follows we consider only a linearized theory for a restricted class of materials. 
For our purposes this is not a serious restriction since the essential features of the analysis 
and the conclusions do not depend significantly on this assumption. Thus, H, K and the 
Lain6 constants, 2 and/~, to be introduced below are all taken as constant. 

2. Thermodynamics  

Consistent with the assumptions of a homogeneous, isotropic, simple, elastic material, [12] 
and Carlson [13], the stress and internal energy are assumed to be functions of the strain E, 

E = Sym(Vu), 

and an equation of state is hypothesized in the form 

= e(E, r/) 

(9) 

(10) 

where q is the entropy density, Coleman and Noll [14] and Coleman and Mizel [15]. The 
Clausius-Duhem inequality then gives 

0 = 0re(E, ~/), (11) 

T(E, 7) = P~E e, (12) 
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where 0 is the temperature and r/is the entropy density. Inverting (11), we write 

= e(E, 0) = e(E, ~/(E, 0)), (13) 

T(E, 0) = T(E, q(E, 0)) (14) 

(we shall abuse the function notation using the subscript notation prevalent in thermo- 
dynamics to keep track of variable dependence.) 

Define the heat capacities for constant strain and constant stress by 

Cd = 0O0q)E = ~0e)r., e~ = 0~0~/)r. (16) 

Then 

cs = tr{[pOE~)0 -- T]OoE)T} + ca. (17) 

But 

paEe)o = T + pOOnq)o, (18) 

so that 

cs - ca = 0 tr [0Eq)0O0E)T]. (19) 

From (12) 

OEq)O = - -  O o ( p -  1T)E = --  p -  100T) E ; (20)  

the last equality follows from the constancy of E. Returning to equation (6), one obtains 
for the energy, see also Carlson [13], 

PCdOtO = -V ' /~  + c~ + 0 tr[O0T)E0tE ]. (21) 

3. Mechanical equations 

Reduction of  the mechanical equations requires a constitutive relation and linearizations. 
Let 

e = tr E. (22) 

Then for small strain the continuity equation reduces to 

p = po(1 - e), (23) 

Chadwick [16], while the density in the momentum and energy relations is taken to be the 
constant Po. 

Assume now a linear stress relation in the form 

T = 2eI + 2/~E - m(O - 0o)I (24) 

where 2, /z are the Lam6 coefficients, m = c~(32 + 2#) and ~ is the coefficient of linear 
thermal expansion. The hydrostatic pressure, mean stress, p = - � 8 9  tr T is then 

p = -�89 + 2#)e + m(O - 0o). (25) 
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The diviatoric stress I" defined by 

T = - p I  + 

satisfies 

T = 2#~ 

where E is diviatoric strain. 
On the other hand, the divergence of the momentum equation (5) gives 

poaZte = -VZp + V.(V.~7) + poV ' f ,  

or 

E. L. Roetman 

(26) 

(27) 

(28) 

V2p = --poa2te + 2#V'(V's  + PoV'Y (29) 

Also 

~0T)E = --mI. (30) 

Since we are interested only in the linear theory, we assume also that 0 - 0o < 0o so that 
the temperature equation (21) becomes 

poca~tO = - V" lz + co - Oom~te. (31) 

The generalized Fourier's law (3) then gives 

poeaOt 0 = HV20 - poKO2e - rnOoOte + 2#KV" (V'E) + co + p o K V . f .  (32) 

The momentum equation (5) becomes 

poOZu = ()~ + #)V(V'u) + #VZu - mV(O - 0o) + pf. (33) 

The pair of equations (32) and (33) are the equations for thermo-elastic problems where the 
coupling is much stronger than one gets with Fourier's law, K = 0 in (32). Compare this 
development with that in Boley and Weiner [17], Fung [18], or Parkus [19]; note parti- 
cularly that no discussion of entropy variation has been necessary for the development here. 

4. Small stress variation 

In the special case of small stress variation from unstressed equilibrium one has that 

T ~ 0 whence, from (27), ~; = 0 and 

e = 3e(0 - 0o). (34) 

Now, T constant means that (14) implicitly defines E as a function of 0 and 

atE : OoE)TOtO. 

But then in (21), 

0 tr [~0T)E~tE ] = -- po 0 tr [~igtl)ot~oE)T]~tO = --po(Cs -- c~)~tO 

by (19). Substitution into (21), gives the temperature equation 

pocs~tO = - V ' / *  + o0. (35) 

Journal of Engineering Math., Vol. 10 (1976) 355-362 



The mechano-caloric effect in thermo-elastic problems 359' 

Using the heat flux expression (3) and (34) one replaces (32) with 

3C~poK~2tO + poCsOtO = H V 2 0  + co q- P oKV ' f .  (36} 

Notice that in the process of uncoupling the temperature equation the specific heat for 
constant stress c~ enters the coefficient of OtO just as in the gas dynamics case, [8]. The two. 
specific heats are related by 

c s -- c a = 0c~2(33~ -t- 2#)p -1. (37), 

The Vernotte generalization (2) leads to a damped wave equation like (36) if one adds z 
times the time derivative of (35) to (35) itself and uses (2) to eliminate the terms in p, a 
procedure which lacks intuitive appeal. For further discussion see Achenbach [20], [21]. 

For the following time harmonic analysis we will ignore the body forces f and internal 
heat supply co. 

5. T ime  harmonic  waves 

Time harmonic displacement and temperature variations with frequency co/2~z propagating: 
in the direction of the unit vector n are given by 

u = Aa exp [i(kx.n - cot)], (38). 

0 - 00 = z exp [i(kx.n - cot)]. (39), 

Substitution of (38) and (39) into (33) and (32) gives respectively 

(#]r _ coZp)Aa + k2(~ + #)A(n .a)n  + ikmvn = 0, (40). 

( I lk  2 - icopca)z + (~#Kik  3 + mOocok - ipKcoZk)An'a = 0 (41) 

for the momentum and temperature relations where we have dropped the subscript on p, 

since it is assumed to be constant. Eliminating z between (41) and (40) one gets 

( #k  -t- + #)(n'a)n co2p)a k2(~ 

m2Oocok 2 + i(-}m#Kk 4 - pmKcoZk 2) ) 
+ ~ p e d - + i ~  i (n.a)n~ A = O. 

For a nontrivial displacement the coefficient of A must vanish. Thus 

(#k  2 - coZp)a + k2(2 + #)(n'a)n 

()~ + 2#)gcok 2 + i ( ~ # m Y k  4 -- pmKJT'2k2co 2) 
+ (n.a)n = 0 (42), 

co + ik 2 

where we have introduced the thermo-elastic coupling coefficient ~, the mechano-caloric 
coupling coefficient ~ and the heat diffusivity W defined by 

mZOo K H 
g - (,~ + 2#)pea 2/f ~ (43), pea pca 
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For transverse wave motion, n is orthogonal to a, (42) reduces to 

#k 2 _ co2p = 0, 

and the velocity of the transverse wave cr = o)/k satisfies 

4 = #1p. 
The transverse waves are not influenced by the thermo-elastic nor by the mechano-caloric 
effects. 

The longitudinal waves, n parallel to a, yield the condition 

(2 + 2#)$cok 2 + imJ{'k2(~#k 2 - -  p(D 2) 
(2 + 2#)k 2 - pco2 + = O. (44) 

co + ikZJCfl 

Clearly the wave number k is complex in this case. The "velocity" c = co/k satisfies 

cc~e mYfk(~# - pc z) 
c ~ - c  2 + - -  + i  = 0  (45) 

c + ik2g p(c + i k ~ )  

where c~ = (2 + 2#)/p is the purely mechanical longitudinal wave velocity. Since c depends 
on k and since it is obviously complex we see that the longitudinal waves exhibit dispersion 
and attenuation as expected. From (40) one obtains now that 

r 

The limiting values for c for high and low frequencies are determined by letting co go 
to 0 and oo with c = co/k remaining bounded. Thus as co ~ o% k ~ oo and (45) yields 
the high frequency limit 

2 2 ( ( 3 2 + 2 # ) B )  
co = c  1 -  3 ( 2 + 2 # ) ( 1 + B )  (46) 

where B = mJY~/2/f. As co ~ 0, k ~ 0 and (45) gives the low frequency limit 

r = + e ) ,  

see [20] page 394 for comparison with the results using Fourier's law. Observe that the 
mechanical response at high frequencies can be determined by the momentum equation 
alone provided the stress relation is modified to the adiabatic stress relation, see [8], 

2 - ~#B 
T =-  eI + 2#E. (47) 

I + B  

The adiabatic stress relation is [18] 

( m ' 0 o )  
T = 2 + eI + 2#E 

Pea 

so that B must satisfy 

( ~ 2 ( 3 2 + 2 # ) 0 0 )  m20o 
(32 + 2#) ~ +  B =  

pca PCa 
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or, using (37), 

7 - 1  
B =  ? _ z  

where ? = often. Since, by (37), 7 > 1, then 0 > B > - 1 .  Since also 4# < 3()t + 2#), 
then 

( 4. ) 
1 < 1 + 3 ( 2 + 2 # )  B (t + B )  -1. 

We see then that the mechano-caloric interaction does not influence the propagation 
velocity at low frequencies, but it increases the propagation velocities at high frequencies. 
This is exactly like the gas dynamics case discussed in [8]. 

With slight modification, (45) can be written as 

(c 2 -- c2)(c 2 + ico2/t ~ + C2C2L g -~ ioam(~# -- pc2)~f'/p = O, 

a quadratic equation in c 2. Thus, considering co as a given parameter with c to be deter- 
mined, 

i 
c z = �89 + ~)  - ~-co(~e  + m S )  

c 2 - ico~ (cZg - icomgC) 
+ ~(c~ + ico~f) 1 + 2 (c~ + icon) 2 

16ico#mJf }~ 
+ 3p + (c~g - icomJ~f~) 2 

To first order terms in g and Y 

c+2 = c~(1 + ~Sg + ?s ( )  + . . . ,  

where 3 = (1 + ico~,~f/c~) -~ and 

( ;~ = 1 + 3(2 T 2#)- (e2 + icoJ/g)-I 

whereas 

c 2 = -ico~,~f + qg + ( X  + . . . .  

where r/ = ico~c2(c 2 + ico~,ut~ -1, ( = [co2mo~g + i(4~lcom/3p)](c [ + icoogt~) -1. The prin- 

cipal term, icoy'g, represents heat diffusion; both q and ~ have real parts which represents 
signal transmission. 

6. Conclusions 

The above analysis suggests that the distinction between ed and cs should be carefully 
observed in the coupled and uncoupled energy field equations, especially at high tempera- 
tures. The mechano-caloric effect provides a stronger coupling between the mechanical 
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and thermal variations through the mechano-caloric coefficient d .  The velocity o f  propa-  

gation of  heat waves is determined by ~(,  see (36), and the limiting propagat ion velocity 

for high frequency waves is increased by a factor  determined by Y .  The mechanical  

response at high frequencies can be determined f rom the mechanical relations alone if the 

stress-strain relation is replaced by an "adiabat ic"  relation. Experimental  studies o f  the 

mechano-caloric effect and determination o f  Y would be very interesting, and an analysis 

o f  the impact  o f  the mechano-caloric effect in non-linear and plastic systems should be 

done;  it is possible that effects now perceived to be a result &non- l inea r  behavior, Johnson 

[22], are due to the mechano-caloric coupling. 
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